Last week a colleague of mine (Glenn Orton, senior research scientist at JPL) presented a review talk on outer solar system spectroscopy in Ohio, urging a closer marriage between those taking laboratory spectroscopic data and the end users, I.e., those like me who are desperate for high quality spectroscopic parameters to compare to measured spectra of the giant planets. Infrared spectroscopy in particular is the only technique for understanding planetary temperatures, composition and aerosols on the giant planets, as we have had only a single direct measurement of Jupiter's soup of atmospheric species from the Galileo probe in 1995. Here are some notes taken from his talk, leading to a wish list for new spectroscopic measurements at the end.
A Brief History
The history of outer solar system spectroscopy can be traced back to 1932 when Rupert Wildt identified the absorption features of ammonia and methane in Slipher's visible spectra of Jupiter and Saturn from 1905. Infrared detection of methane by Gerard Kuiper came in 1947, and Spinrad first identified hydrogen absorption in 1963. The 1970s saw the emergence of high resolution infrared spectroscopy with Beer et al. 1974 discovering Jupiter's CH3D; Larson et al. 1974 finding deep water features at 5 microns using the Kuiper Airborne Observatory; and Ridgeway et al. (1974) observing Jupiter's stratospheric hydrocarbons, ethane and acetylene at 10 microns from Kitt Peak. Gillett et al. (1973) explored the mid infrared in more depth to discover tropospheric absorption features of ammonia and phosphine. At even longer wavelengths, the first far infrared measurements of the giants came from the radiometer on board Pioneer 10 and 11 in the 1970s, and the IRIS spectroscopic studies of the Voyager spacecraft put infrared giant planet studies on a firm footing in the 1980s. In more recent times, infrared spectroscopy has been provided by Galileo and Cassini, ground based telescopes along with earth proximal observatories like Spitzer and Herschel.
Temperatures, Composition and Clouds
The primary product of infrared remote sensing is the atmospheric temperature structure from the cloud forming regions up to the stable stratosphere. These derivations rely on well mixed constituents to serve as thermometers, including methane and hydrogen, although there is mounting evidence that methane is not particularly well mixed on the ice giants. The different line intensities means that we can probe a broad range of altitudes. Once we have a good estimate of the temperature, the molecular features can be used to determine composition. For example, He/H2 can be derived from far-IR spectrum using the differences in absorption between the long-wavelength translational band and broad rotational transitions of H2-H2 versus H2-He collision-induced absorption. The fact that helium appears deleted on Jupiter and Saturn has been used as evidence for helium segregation within their interiors. The abundance of deuterium can be used as an indicator of planetary origins, with the D/H ratio in Jupiter and Saturn close to protosolar, whereas that in Uranus and Neptune suggests an enrichment by planetary ices during their formation.
The emergent spectrum of the giant planets is governed by a wide variety of chemical and dynamical processes. Vertical mixing from the feel troposphere dredges disequilibrium products like phosphine, arisen, germane and CO to the upper troposphere; photochemistry initiated by the UV destruction of methane creates a soup of hydrocarbon species in the stratosphere; and an external influx of oxygenated species to the upper atmosphere provides trace amounts of water, CO and CO2 in the high atmosphere.
However, determination of chemical abundances and temperatures relies on a knowledge of the broadband contributions to the emergent spectra by aerosols, which are often so broad that the are impossible to identify uniquely. Ammonia ice, for example, has long been suspected to be the dominant constituent of Jupiter's upper cloud decks, but has only been spectroscopically identified in regions of powerful convective updrafts like the wake of the Great Red Spot. We sound the vertical properties of clouds by moving in and out of strong methane and hydrogen absorptions in the near infrared - seeing bright clouds in strong absorption bands implies that they are at high altitude, whereas seeing them near the continuum means that they are deep. An accurate knowledge of the methane line data, as well as the broad spectra of condensates, is therefore essential for accurate interpretations.
A Giant Planet Spectroscopists Wish List
Orton finished his presentation with a spectroscopic wish list for the outer planets community, and calls for a closer connection between the lab spectroscopists and the end users. His list included:
- Methane: Further studies of methane mostly at the shortest wavelengths where the transitional structures are becoming prohibitively complex, even for modern techniques.
- Broadening: Collisional-broadening widths and shapes are required for all lines as a function of temperature, particuarly CH4), as we currently use a handful of real measurements and extrapolate them for all lines of a species. These could be added to a HITRAN/GEISA-like spectroscopic data base for H2/He collisions relevant to the giant planets.
- Hydrocarbons: Characterisation of the full suite of complex hydrocarbons predicted and observed on the giant planets, in addition to nitriles observed on Titan.
- Collision Induced Absorption: Re-examination of collision induced absorptions, including N2-CH4 CIA spectra at appropriate temperatures for Titan, which are known to be off by factors of several; and hydrogen CIA measurements at a broad range of temperatures (I.e., below 40 K and above 400 K).
- Condensates and Hazes: Refractive index spectra of potential condensates in the giant planets. For example, diphosphene and hydrazine are expected by products of tropospheric photochemistry that could dominate the hazes on Jupiter and Saturn, but their spectra properties are virtually unknown. We need a library of condensate spectra, e.g. mixtures of NH3 and NH4SH ice with photochemically produced hazes for comparison with broadband planetary observations.
- Hot Giant Planets: Characterisation of “hot spectra” of several constituents for exoplanet spectral analysis. The brunt of this effort is being led by ab initio quantum modelling (for example the Exomol project led by UCL here in the UK, www.exomol.com), but there is a need for verification by laboratory spectroscopy at temperatures of several thousands of kelvin.
In summary, infrared spectroscopy of the giant planets can reveal a great deal about their temperatures, composition and aerosols, but the results will only ever be as good as the underlying radiative transfer modelling. Those models are totally dependent on accurate and precise databases of spectroscopic parameters, and laboratory studies should continue to play a major role in supporting missions and ground based observations.