Neptune
stands apart from the other giant planets, possessing the most meteorologically
active atmosphere in our solar system despite its great distance from the
Sun. Unlike sluggish Uranus, which was
radically altered by collisional processes, Neptune may be typical of a whole
class ice giant planets being discovered beyond our solar system. And yet some of the basic dynamical,
chemical and cloud-forming processes at work within this churning atmosphere,
along with the competing influences of seasonally changing insolation and
internal heat flux on atmospheric structure, remain an unresolved mystery. The European astronomy community is currently assembling a series of white papers to inform ESA's large cornerstone missions in the coming decades, and I've been asked to contribute ideas for Neptune orbital exploration. In my opinion, future exploration of Neptune’s atmosphere must focus on what makes this world
unique, so here's my list of top questions.
Neptune through the wavelengths, from visible-light imaging from Hubble, to near-infrared imaging from Keck (Credit I. de Pater) and thermal-infrared imaging from VLT (Credit: G. Orton) |
What powers
the circulation and meteorology of an ice giant? Neptune provides an
excellent test for models balancing seasonally dependent insolation (due to the
26o axial tilt and the 165-year orbit) and excess internal heat flux
(emission exceeding solar inputs by a factor of 2.6, the largest in the solar
system). The source of this intrinsic
luminosity is uncertain, but it likely drives the complex meteorology of the
troposphere and is the key factor distinguishing Neptune from Uranus, which has
a negligible internal heat. Neptune has
a different relation between the banded cloud structures, atmospheric
temperatures and the zonal wind structure when compared to Jupiter or
Saturn. Rapidly evolving convective
cloud activity prevails at cooler mid-latitudes, with retrograde flow at the
warmer equator and a high-latitude prograde jet confining a seasonally variable
polar vortex of unusually high temperatures and unique chemical
composition. Dark ovals (such as the
Great Dark Spot observed by Voyager 2) are sometimes associated with bright
white orographic clouds at higher altitudes.
Neptune’s zonal winds are among the strongest in the solar system,
possibly as a result of less atmospheric turbulence dissipating the energy when
compared to Jupiter. A future mission
must correlate visible changes to cloud albedo, winds, eddies and vortices with
environmental changes (e.g., latent heat release from cloud condensation,
conversion between different spin states of molecular hydrogen, long term
seasonal variability in temperature and composition) to understand the
processes controlling the changing face of Neptune.
What is the
origin and distribution of the zoo of chemical species in Neptune’s atmosphere? Neptune’s atmospheric composition is
determined by condensation chemistry (removing volatiles such as CH4,
NH3, H2S, and H2O to the condensate phase),
vertical mixing (dredging CO and possibly other species from the warmer
interior), external influx of oxygenated species from infalling comets and
dust, and a rich hydrocarbon photochemistry due to the UV destruction of
methane. Measurements of elemental enrichments
(C/H, N/H, O/H), isotopic ratios (D/H, 13C/12C, 15N/14N)
and noble gas abundances (via an entry probe) would provide constraints on the
delivery of these materials to the forming proto-Neptune and conditions in the
early solar system. Furthermore, mapping
the spatial distributions of cloud-forming volatiles, disequilibrium species
and photochemical products teaches us about the chemical processes and cloud
formation at work within the ice giant, and their variability from equator to
pole. The latitudinal distribution of
methane will reveal whether it is enhanced by tropical uplift or by warming of
the cloud trap at the seasonally heated poles. Indeed, the polar vortices are
the sites of unique conditions due to a close connection with the planet’s
magnetosphere, and require exploration via a high-inclination orbital
phase.
The highly variable atmpsphere imaged by Hubble in 2011 (left); and high-altitude clouds of methane ice observed by Voyager in 1989 (right). |
What are
the atmospheric structure and cloud properties from the troposphere to the
thermosphere? Determinations of the three
dimensional profiles of temperature, density, gaseous composition and aerosols
provides the key to understanding the balance between internal heating,
convective mixing, latent heat release and radiative heating and cooling
throughout an ice giant atmosphere. Vertical
sounding should reveal the circulation regimes, zonal winds and turbulence
characteristics at a variety of depths both within and above the tropospheric
clouds; the nature and spatiotemporal variability of ice giant clouds and
hazes; meridional motions in the stratosphere; and the importance of wave
activity in redistributing energy and material with altitude. The importance of wave breaking and
ionosphere-magnetosphere drag processes should be determined in studying the
abnormally high temperatures of the ionosphere and thermosphere. This three-dimensional planetary-scale
characterization of an ice giant atmosphere will provide a bridge between the
deep circulation and the external magnetospheric environment, to be directly
compared with Galileo, Cassini and JUICE reconnaissance of the gas giants.
No comments:
Post a Comment